

Journée Annuelle du CRPP

17 mars 2025

Apport de la biologie fondamentale dans le diagnostic des pathologies plaquettaires génétiques

Hana Raslova INSERM UMR 1287 Villejuif

Institut national de la santé et de la recherche médicale

- Parfois des TH sont pris pour des PTI ce qui peut conduire à la splénectomie ou à des traitements immunosuppresseurs (corticoïdes, rituximab, imurel)
- Les thrombopénies modérées ne sont habituellement pas explorées, alors que les FPD/AML qui prédisposent aux leucémies ont souvent le chiffre de plaquettes >100x10³/μL si bien que le diagnostic n'est souvent fait qu'au stade leucémie
- Certaines TH (comme pour les mutations d'ANKRD26) peuvent conduire à une dysmégacaryopoïèse avec une faible présence de blastes dans la MO ce qui peut conduire au diagnostic erroné de SMD avec des traitements de type chimiothérapie

Identification de nouveaux variants

Test de séquençage à haut débit ThromboGenomics a été établi pour le diagnostic des pathologies plaquettaires héréditaires: ~ 100 gènes

Simeoni I et al, Blood 2016

- 745 variants uniques, 50% desquels sont nouveaux
- Chez certains patients on trouve hérédité oligogénique
- Cause génétique chez plus de 50% of patients reste nonidentifiée

Mégacaryopoïèse

Gènes mutés dans des thromopénies héréditaires

HSC	megakaryobla	immature megakaryo	cyte	mature megakaryocyte	* * * *
TPO/MPL	Transcription	Metabolism	Cytoskeleton	receptor	Sialylation
signaling	factors	granule	MYH9	signaling	GNE
	GATA1	biogenesis,	TUBB1	GP1BA	SLC35A1
THPO	FLI1	ion channels	ACTN1	GP1BB	GALE
MPL	GFI1B	NBEAL2	FLNA	GP9	B4GALT
ANKRD26	RUNX1	KDSR	TPM4	ITGA2B	
	ETV6	ABCG5	DIAPH1	ITGB3	
Predisposition to	IKZF5	ABCG8	CDC42	SLNF14	
leukemia	HOXA11	CYCS	WAS	PRKACG	
	MECOM	STIM1	ARPC1B	VWF	
	MEIS1, 4	TRPM7	FYB	SRC	Large (giant) platelet size
	Splicing factor		WIPF1	PTPRJ	
	RBM8A			MPIG6B	Small platelet size
					Normal platelet size

Régulation de la ploïdisation MK : Entrée dans l'endomitose

MYH10 dans FPD/AML

FPD/AML: Trouble plaquettaire familial avec prédisposition à la leucémie aiguë myéloïde

- Transmission autosomale dominante
- Volume plaquettaire moyen normal
- Thrombocytopénie modérée
- Défaut de la fonction plaquettaire
- Présence de petits mégacaryocytes hypoploïdes dans la moelle osseuse

Prédisposition aux hémopathies malignes myéloïdes (LAM, SMD, LMMC, LAL-T)

Mutations germinales de RUNX1

MYH10 : origine des MK hypoploïdes chez les patients FPD/AML

FPD/AML: Trouble plaquettaire familial avec prédisposition à la leucémie aiguë myéloïde

- Volume plaquettaire moyen normal
- Thrombocytopénie modérée
- Défaut de la fonction plaquettaire
- Présence de petits mégacaryocytes hypoploïdes dans la moelle osseuse

Prédisposition aux hémopathies malignes myéloïdes (LAM, SMD, LMMC, LAL-T)

✓ MYH10 est présent dans les MK des patients
 ✓ l'inhibition de son activité restaure le niveau de ploïdie

Bluteau et al, Blood 2012

MYH10 : biomarqueur de FPD/AML

FPD/AML: Trouble plaquettaire familial avec prédisposition à la leucémie aiguë myéloïde

- Transmission autosomale dominante
- Volume plaquettaire moyen normal
- Thrombocytopénie modérée
- Défaut de la fonction plaquettaire
- Présence de petits mégacaryocytes hypoploïdes dans la moelle osseuse

Prédisposition aux hémopathies malignes myéloïdes (LAM, SMD, LMMC, LAL-T)

MYH10 : biomarqueur des TH liées à RUNX1, FLI1 et GATA1

Thrombocytopénie Paris-Trousseau *FLI1 deletion*

Antony-Debré et al, Blood 2012

MYH10 : biomarqueur des TH liées à RUNX1, FLI1 et GATA1

Thrombocytopénie Paris-Trousseau *FLI1 deletion*

HSC10 GPIVD-2 GPIVD-2 GPIVD-2

Antony-Debré et al, Blood 2012

Macrothrombopénie héréditaire avec mutations ponctuelles du gène *FLI1* Thrombopénie héréditaire avec mutations ponctuelles dans GATA1

Nouveaux variants (VUS) de RUNX1: cause ou pas de thrombopénie?

Patients suivis à l'Hôpital Trousseau p.N248T (VUS) 7. Contrôle neg 1. p.R201* 8. p.S12P (VUS) 2. 9. p.R201* 3. p.D305N 10. Contrôle neg c.509 -2A>T (site d'épissage, VUS) 4. c.509 -2A>T (site d'épissage, VUS) 11. HEL (lignée) 5. p.N248T (VUS) 6.

Collab A. Kauskot

TH associées aux altérations génétiques de la voie TPO/MPL

ANKRD26

٠

٠

•

٠

cellulaire

ANKRD26-Related disease/ Thrombocytopénie 2

- Transmission autosomale dominante
- Volume plaquettaire moyen normal
- Thrombocytopénie modérée
- Non syndromique

Prédisposition aux hémopathies myéloïdes malignes (LAM, SMD, LMMC, LMC)

Décrit pour la première fois en 2011 (Noris et al, 2011; Pipucci et al, 2011)

ANKRD26 mRNA level relative to control C1

Signalisation de la voie des MPAK augmentée

Son inhibition corrige la formation des proplaquettes

(Bluteau&Balduini et al., JCI, 2014)

ANKRD26-Related disease/ Thrombocytopénie 2

Comment ANKRD26 affecte la signalisation TPO/MPL ?

 ✓ Aucun défaut dans la maturation du MPL
 ✓ Augmentation du taux d'ANKRD26 n'entraîne pas d'augmentation du MPL à la surface à l'état de base

✓ ANKRD26 interagit avec MPL

✓ Impaired MPL internalization in presence of high ANKRD26 level

 ✓ un niveau plus élevé d'ANKRD26 conduit à une hypersensibilité à la TPO et à un taux de prolifération accru à faible dose de TPO

ANKRD26 régule-t-il la signalisation des récepteurs homodimériques des cytokines de type 1 ?

- Certains patients THC2 présentent une leucocytose et une érythrocytose (Noris et al., 2011)
- Caractéristiques communes :
 - Signalisation dépendante de JAK2
 - Voies STAT/PI3K/MAPK : stimulent la survie et la prolifération cellulaires
 - La signalisation est réprimée par l'internalisation du récepteur et des protéines régulatrices négatives

(adapté de Vainchenker & Kralovics, 2017)

ANKRD26 module la signalisation G-CSF/G-CSFR

ANKRD6 : nouveau régulateur de la signalisation des récepteurs des cytokines de type I dans l'hématopoïèse normale et pathologique

Basso-Valentina F & Donada A, et al. Haematologica 2023

Thrombocytopénie amégacaryocytaire congénitale (CAMT)

- Mutations affectant le récepteur de la thrombopoïétine, MPL
- Transmission autosomique récessive
- Thrombocytopénie sévère (< 50 000 PLQ/µL et taux de TPO élevé)
- Insuffisance médullaire

- Type I : perte complète de fonction du MPL, progression précoce vers l'insuffisance médullaire
- Type II : le récepteur conserve une fonction résiduelle, développement retardé de l'insuffisance médullaire

Vert : mutations moins sévères

(Germeshausen, M., & Ballmaier, M., 2020)

Thrombocytopénie amégacaryocytaire congénitale (CAMT)

B/Mix: mutations faux-sens ou les mutations hétérozygotes composites: expression variable de MPL à la surface

mix

В

ND

MPL^{R464G} est responsable de la CAMT dans une famille consanguine

MPL^{R464G} est faiblement exprimé à la surface des plaquettes de patients et des lignées cellulaires

MPL^{R464G} est un récepte

re retenu dans le réticulum

200 enaopiasmique

form

Prolifération

Qui ne répond que partiellement à la stimulation TPO

Sur

estaure pas le trafic de MPL^{R464G} vers ce cellulaire

Surexpression de CALR^{del52} + ELT corrige la différenciation MK à partir des cellules CD34⁺ des patients

Seules les cellules mCherry+ ont pu se différencier

Basso-Valenitna et al, Blood 2021

Protéine mutante CALR corrige la réponse du variant MPL p.R464G associé à la CAMT à l'eltrombopag

Basso-Valenitna et al, Blood 2021

TH liées aux mutations des régulateurs du cytosquelette et de la signalisation.

Signalisation des récepteurs GP

Cytoskeleton remodeling

Effecteurs de RhoA: DIAPH (mDia)

Faix, J., and Grosse, R. Developmental cell. 2006

DIAPH/mDia:

I: Catalyse la nucléation et la polymérisation de l'actine pour former des filaments d'actine non ramifiés.

II: Stabilise et dirige les microtubules.

DIAPH sont dans une position idéale pour coordonner les fonctions qui dépendent de la coopération étroite entre l'actine et le cytosquelette de la tubuline, comme la formation des proplaquettes.

Différenciation mégacaryocytaire

Pan et al, Blood, 2014

DIAPH1 régule négativement la formation de proplaquettes

Des études fonctionnelles au diagnostique

A gain-of-function variant in *DIAPH1* causes dominant macrothrombocytopenia and hearing loss

Simon Stritt,^{1,*} Paquita Nurden,^{2,3,*} Ernest Turro,^{4-7,*} Daniel Greene,^{4,6,7} Sjoert B. Jansen,^{4,5} Sarah K. Westbury,⁸ Romina Petersen,^{4,5} William J. Astle,⁴⁻⁶ Sandrine Marlin,⁹ Tadbir K. Bariana,^{10,11} Myrto Kostadima,^{4,5} Claire Lentaigne,^{12,13} Stephanie Maiwald,^{4,5} Sofia Papadia,^{4,7} Anne M. Kelly,^{4,5} Jonathan C. Stephens,^{4,5} Christopher J. Penkett,^{4,7} Sofie Ashford,^{4,7} Salih Tuna,^{4,7} Steve Austin,¹⁴ Tamam Bakchoul,¹⁵ Peter Collins,¹⁶ Rémi Favier,^{17,18} Michele P. Lambert,^{19,20} Mary Mathias,²¹ Carolyn M. Millar,^{12,13} Rutendo Mapeta,^{4,7} David J. Perry,²² Sol Schulman,²³ Ilenia Simeoni,^{4,7} Chantal Thys,²⁴ BRIDGE-BPD Consortium, Keith Gomez,¹¹ Wendy N. Erber,²⁵ Kathleen Stirrups,^{4,7} Augusto Rendon,²⁶ John R. Bradley,^{5,27} Chris van Geet,²⁴ F. Lucy Raymond,^{7,28} Michael A. Laffan,^{12,13} Alan T. Nurden,^{2,3} Bernhard Nieswandt,¹ Sylvia Richardson,⁶ Kathleen Freson,^{24,†} Willem H. Ouwehand,^{4,5,7,29,†} and Andrew D. Mumford^{30,†}

Plaquettes des patients DIAPH1 R1213*

- augmentation de l'actine filamenteuse et des microtubules stables, indiquant une activation constitutive de DIAPH1

poly-L-lysine- immobilized resting platelets

Fibrinogen

MYH9-Related Disease

MYH9-Related Disease

• Les mutations localisées soit dans le domaine moteur de la tête, soit dans le domaine de la queue du gène *MYH9* ne modifient pas la différenciation et la ploïdisation des MK

.. mais conduisent à

- une diminution du nombre de proplaquettes portant MK

Pecci A, et al, J Thromb and Haemostasis, 2009 (dans les MK humains) Zhang Y, et al, Blood, 2012 (modèle murin)

- un défaut dans la formation des proplaquettes

Chen Y et al, JTH, 2013

Control

Patien

MYH9-Related Disease

• Les mutations MYH9 induisent une augmentation de l'adhésion MK et de la formation de fibres de stress grâce à des forces contractiles accrues

Identification d'un variant conduisant à un nouveau type de macrothrombocytopénie

- II-1 et II-2: 5-8 x10⁹/L
- Cosanguinité parentale

 Imposition d'un mode de transmission autosomique récessif :
 Recherche de mutations homozygotes chez les patients et hétérozygotes chez les autres membres de la famille. : deux gènes identifiés GNE et PRKACG

GNE:

- Enzyme bifonctionnelle qui initie et régule la biosynthèse des acides sialiques
- avant 2014: Mutations de GNE associées à une myopathie et une sialurie (Argov Z et al, Neurotherapeutics, 2008)

PRKACG:

Sous-unité catalytique γ de la protéine kinase A (PKA).

PRKACG

La surexpression de PRKACG WT corrige partiellement le phénotype

Manchev et al, Blood, 2014

PRKACG

Substrats de la PKA dans les plaquettes

FLNA mutations: macrothrombocytopénie associée à la Filaminopathie A

GPIBB mutations : macrothrombocytopénie associée au Syndrome Bernard Soulier

PRKACG/FLNA

- Diminution profonde de la FLNa dans les MK et plaquettes
- PRKACG et responsable de la phosphorylation de la FLNa, la protégeant ainsi de la dégradation

Manchev et al, Blood, 2014

GNE

- Après 2014: GNE mutations ont été trouvées étant associées aux thrombopénies héréditaires (Mori-Yoshimura et al, Orphanet J Rare Disease, 2014; Izumi et al, Neuromuscul Disord. 2014; Futterer et al, Blood, 2018; Revel-Vilk et al, Blood, 2018; Paul&Liewluck, J Neurol Sci, 2020)
- Les mutations de GNE affectent profondément le nombre de plaquettes circulantes (Lee-Sundlov et al, J Thomb Haemost, 2020)
- La clairance hépatique accrue des plaquettes hyposialylées explique la thrombocytopénie liée au GNE (Noordermeer et al, Blood Advances 2022)

GNEmut: défaut de sialylation

Garçon de 13 ans présentant une thrombopénie sévère (13G/L) découverte lors de son hospitalisation pour détresse respiratoire néonatale au CHU Rennes (Dr Sophie Bayart)

- pas de consanguinité
- présente ecchymoses, pétéchies
- macrothrombopénie
- nombreux MK d'allure normale

50 ·

NGS: mutations hérérozygotes composites de **GNE** p.Gln597ProfsTer9 et p.Gly547Ser

30

Exposition augmentée de galactose à leur surface: désialylation plaquettaire

GNEmut: pas de défaut de MK-poïèse in vitro

Filaminopathie A

- Liée au chromosome X L'hémizygose est létale
- Patientes **9** : mutations/délétions hétérozygotes dans le gène *FLNA* localisé sur le chromosome Xq28 codant pour la protéine de liaison au cytosquelette
- Manifestations cliniques multiples, dont une macrothrombocytopénie

Expression de la filamine A

• Pas d'expression de FLNa dans les cellules FLNA^{mut}

Megacaryocytes

Donada et al, Blood, 2019

Filamine A et mégacaryopoïèse

• Pas de défaut de différenciation MK

• Défaut profond de la formation des proplaquettes en absence de FLNa

Filamine A et mégacaryopoïèse

FLNa (répétition 5 de type lg) et **tyrosine kinase SYK** (signalisation du GPVI)

FLNa (répétition de type lg 17) et **GPlb**α (adhésion sous taux de cisaillement élevé)

FLNa (répétition de type lg 21) et $\alpha IIb\beta 3$ (régulateur négatif de l'activation de $\alpha IIb\beta 3$)

FLNa (Ig-like repeat 24) et **petites GTPases** impliquées dans l'adhésion cellulaire, la motilité, la migration, le cycle cellulaire,...

Falet et al, JEM, 2010 - Cranmer et al, Blood, 2011 - Liu et al, Nat Struct Mol Biol, 2015 – Begonja et al, Blood, 2015

Qu'en est-il de la fonction FLNa dans les MK?

FLNA WT

- FLNA Del1: pas de liaison à l'actine
- FLNA Del2: pas d'interaction avec GPIb α
- *FLNA* Del3: pas d'interaction avec β 3

FLNA Del4: pas de dimérisation/interaction avec les petites GTPases

Les constructions ont été introduites dans une lignée iPSC *FLNA*^{null} par recombinaison homologue dans le locus AAVS1 transcriptionnellement actif

L'interaction FLNA-GPIba ne semble pas être cruciale pour la formation des proplaquettes

FLNa/GPIb α interaction

Donada et al, Blood, 2019

α IIb β 3-FLNa-RhoA, un nouvel axe ?

dimérisation/interaction avec les petites GTPases

FLNA^{mut} MKs

Donada et al. Blood 2019

Activation de la voie RhoA sur le fibrinogène

Donada et al. Blood 2019

Inactivation de la voie RhoA : nécessaire à la génération de plaquettes

Mécanisme physiopathologique

formation normale de plaquettes

macrothrombocytopénie

Donada et al. Blood 2019

TH lié à la signalisation du récepteur GPIb-GPIX

• une maladie hémorragique autosomique récessive rare avec des mutations homozygotes bialléliques ou hétérozygotes composées dans *GP1BA*, *GP1BB* et *GP9* il existe également une forme monoallélique de BSS (mutation Ala156Val Bolzano)

Berndt et al, Haematologica, 2011

Syndrome de Bernard-Soulier: mutation hétérozygote GPIb α^{N103D}

• Patient porteur d'une mutation hétérozygote du gène *GP1BA*: c.307A/G, p. Asn103Asp

Macrothrombocytopénie modérée : 95-105 G/L

Expression de GPIb α^{N103D} /GPIb β /GPIX et maturation des MK: normales

Interaction GPIbα^{N103D}/FLNa: normale

Formation anormale de plaquettes par les mégacaryocytes GPIb α^{N103D}

Nombre de plaquettes

Modèle iPSC reproduit la pathologie

Lordier et al, Haematologica 2025

Le mutant GPIb α^{N103D} induit une préactivation du complexe α IIb β 3

• Fixation du fibrinogène augmenté après l'activation par thrombine

• GPIb α^{N103D} augmente la formation de fibres de stress sur fibrinogène

Lordier et al, Haematologica 2025

GPIb α^{N103D} induit une activation accrue de la voie RhoA

Inhibition de ROCK1/2 restaure la formation des fibres de stress

Lordier et al, Haematologica 2025

Inhibition de ROCK1/2 restaure la formation des plaquettes

Lordier et al, Haematologica 2025

GPIb α^{N103D} induit une augmentation de P-SRC Y419

CREB S133

FGR Y412

p38a_T180/Y182

STAT2_Y689

CNT

b-catenin

0,1

GPIbaN103D

JNK1/2/3_T183/Y185,T221/Y223

Analyse de phosphoproteome

Inhibition de ROCK1/2 restaure la production de plaquettes par les MK avec mutation monoallélique *GP1BA*^{L160P} ou *GP1BA*^{N150S}

Ρ2

GP1BAN150S

P3

CNT3

Lordier et al, Haematologica 2025

Mais pas par les MK avec mutation biallélique GP1BB^{G43W} ou GP1BA^{L139P}

Lordier et al, Haematologica 2025

Activation accrue de la voie RhoA en aval de αIIbβ3/SRC contribue au syndrome hétérozygote de Bernard Soulier

Lordier et al, Haematologica 2025

Signalisation des récepteurs GP

CONCLUSION

I. Une meilleure connaissance de la régulation de la mégacaryopoïèse normale pourrait être informative sur de nouveaux gènes impliqués dans la physiopathologie des thrombopénies héréditaires

II. La pertinence fonctionnelle des nouveaux variants (surtout de signification inconnue) découverts dans les TH doit être vérifiée à l'aide de tests/modèles appropriés

Remerciements

INSERM U1287, Team 2

Larissa Lordier Nathalie Balayn Cecilia Oyarzun Marin Isabelle Plo Caroline Marty Iléana Antony-Debré Brahim Arkoun William Vainchenker Najet Debili Monika Wittner

Hôpital Trousseau, Paris Rémi Favier Paola Ballerini Guy Leverger Guillaume Nam Nguyen Hélène Lapillonne Hélène Boutroux

Université de Pavia, ITALIE Alessandra Balduini Christiano Di Budo

Paula Heller,

Ana Glembotsky

CHU Renne: Sophie Bayart

Hôpital Kremlin Bicêtre: Cécile Lavenu-Bombled

Hôpital Cochin: Valérie Proulle

Pellegrin Hospital, Bordeaux Cyril Goizet

CHU de Rennes: Sophie Bayart

Hôpital Robert-Debré: Anne Vincenot

*ex:

Alessandro Donada Francesca Basso-Valentina Dominique Bluteau Vladimir Manchev Morgan Hilpert Laure Gilles Jean-Edouard Martin Mira El Khoury Delphine Muller Yunchua Chang

PFIC – Gustave Roussy

Philippe Rameau Cyril Catelain Sylvie Souquère Yann Lecluse

CRPP: Marie Christine Alessi

INSERM U1176, Kremlin-Bicetre

Alexandre Kauskot Marijke Bryckaert Jean-Philippe Rosa Bob Regis Cécile DENIS

CONICET, Buenos Aires, Argentina

SilkFusion